
aiothrottles
Release 0.2.0

Aug 21, 2022

Contents:

1 Usage 3

2 Installation 5

3 Supported Python Versions 7
3.1 Getting Started . 7
3.2 Examples . 7
3.3 throttles . 9

4 Indices and tables 13

Python Module Index 15

Index 17

i

ii

aiothrottles, Release 0.2.0

aiothrottles synchronization primitives are designed to be extension to asyncio synchronization primitives.

For more details, see aiothrottles Documentation.

Contents: 1

https://docs.python.org/3/library/asyncio-sync.html
https://konstantintogoi.github.io/aiothrottles

aiothrottles, Release 0.2.0

2 Contents:

CHAPTER 1

Usage

Throttle implements a rate limiting for asyncio task. A throttle can be used to guarantee limited access to a shared
resources.

The preferred way to use a Throttle is an async with statement:

throttle = Throttle('3/s')

... later
async with throttle:

access shared state

which is equivalent to:

throttle = Throttle('3/s')

... later
await throttle.acquire()
try:

access shared state
finally:

throttle.release()

A call rate is determined by the rate argument. Pass the rate in the following formats:

• "{integer limit}/{unit time}"

• "{limit's numerator}/{limit's denominator}{unit time}"

rate examples:

• 4/s, 5/m, 6/h, 7/d

• 1/second, 2/minute, 3/hour, 4/day

• 1/3s, 12/37m, 1/5h, 8/3d

3

https://docs.python.org/3/reference/compound_stmts.html#async-with

aiothrottles, Release 0.2.0

4 Chapter 1. Usage

CHAPTER 2

Installation

pip install aiothrottles

or

python setup.py install

5

aiothrottles, Release 0.2.0

6 Chapter 2. Installation

CHAPTER 3

Supported Python Versions

Python 3.6, 3.7, 3.8 and 3.9 are supported.

3.1 Getting Started

3.1.1 Installation

If you use pip, just type

pip install aiothrottles

You can install from the source code like

git clone https://github.com/KonstantinTogoi/aiothrottles.git
cd aiothrottles
python setup.py install

3.2 Examples

3.2.1 awaitable

Use of aiothrottles.Throttle as awaitable object:

>>> import time
>>> from aiothrottles import Throttle
>>>
>>> throttle = Throttle(rate='1/s')
>>>
>>> async def foo(n):

(continues on next page)

7

aiothrottles, Release 0.2.0

(continued from previous page)

... print(n, time.time())

...
>>> for i in range(5):
... await throttle
... await foo(i)
... throttle.release()
...
0 1563275828.253736
1 1563275829.2547996
2 1563275830.2562528
3 1563275831.257302
4 1563275832.2587304

3.2.2 context manager

Use of aiothrottles.Throttle as context:

>>> import time
>>> from aiothrottles import Throttle
>>>
>>> throttle = Throttle(rate='1/s')
>>>
>>> async def foo(n):
... print(n, time.time())
...
>>> for i in range(5):
... async with throttle:
... await foo(i)
...
0 1563275898.6722345
1 1563275899.673589
2 1563275900.6750457
3 1563275901.6763387
4 1563275902.6777005

3.2.3 decorator

Use of aiothrottles.Throttle as decorator for coroutines:

>>> import time
>>> from aiothrottles import throttle # Throttle alias
>>>
>>> @throttle(rate='1/s')
... async def foo(n):
... print(n, time.time())
...
>>> for i in range(5):
... await foo(i)
...
0 1563272100.4413373
1 1563272101.4427333
2 1563272102.4441307
3 1563272103.445542
4 1563272104.4468124

8 Chapter 3. Supported Python Versions

aiothrottles, Release 0.2.0

3.3 throttles

Rate limiting primitives.

3.3.1 AwaitableMixin

class aiothrottles.throttles.AwaitableMixin
Awaitable object.

This enables the idiom:

await throttle

as an alternative to:

await throttle.acquire()

3.3.2 ContextManagerMixin

class aiothrottles.throttles.ContextManagerMixin
Context manager.

This enables the following idiom for acquiring and releasing a throttle around a block:

async with throttle:
<block>

3.3.3 DecoratorMixin

class aiothrottles.throttles.DecoratorMixin
Coroutine decorator.

This enables decorating of a coroutine that always need acquiring and releasing a throttle:

@throttle('3/s')
async def coroutine():

<block>

3.3.4 RateMixin

class aiothrottles.throttles.RateMixin(rate: str)
Encapsulation of a rate limiting.

This enables setting the limiting rate in the following formats:

• "{integer limit}/{unit time}"

• "{limit's numerator}/{limit's denominator}{unit time}"

Examples of usage:

• "1/s", "2/m", "3/h", "4/d"

• "5/second", "6/minute", "7/hour", "8/day"

3.3. throttles 9

aiothrottles, Release 0.2.0

• "1/3s", "12/37m", "1/5h", "8/3d"

3.3.5 Throttle

class aiothrottles.throttles.Throttle(rate, *, loop=None)
Primitive throttle objects.

A primitive throttle is a synchronization primitive that manages an internal counter and has a trace. A primitive
throttle is in one of two states, ‘locked’ or ‘unlocked’. It is not owned by a particular coroutine when locked.

Each acquire() call:

i) appends the coroutine to a FIFO queue

ii) blocks until the throttle is ‘locked’

iii) decrements the counter

Each release() call:

i) appends current timestamp at the and of the trace

ii) increments the counter

Each locked() call:

i) removes expired timestamps from the trace

ii) returns True if the length of the trace exceeds the limit or the counter is equal to zero

Usage:

throttle = Throttle()
...
await throttle
try:

...
finally:

throttle.release()

Context manager usage:

throttle = Throttle()
...
async with throttle:

...

Throttle objects can be tested for locking state:

if not throttle.locked():
await throttle

else:
throttle is acquired
...

Throttle.locked()→ bool
Return True if throttle can not be acquired immediately.

Returns: bool

Throttle.acquire()→ None
Acquire a throttle.

10 Chapter 3. Supported Python Versions

aiothrottles, Release 0.2.0

Throttle.release()→ None
Release a throttle.

Raises: ValueError: when Throttle aleready released

3.3. throttles 11

aiothrottles, Release 0.2.0

12 Chapter 3. Supported Python Versions

CHAPTER 4

Indices and tables

• genindex

• modindex

13

aiothrottles, Release 0.2.0

14 Chapter 4. Indices and tables

Python Module Index

a
aiothrottles.throttles, 9

15

aiothrottles, Release 0.2.0

16 Python Module Index

Index

A
acquire() (aiothrottles.throttles.Throttle method), 10
aiothrottles.throttles (module), 9
AwaitableMixin (class in aiothrottles.throttles), 9

C
ContextManagerMixin (class in aiothrot-

tles.throttles), 9

D
DecoratorMixin (class in aiothrottles.throttles), 9

L
locked() (aiothrottles.throttles.Throttle method), 10

R
RateMixin (class in aiothrottles.throttles), 9
release() (aiothrottles.throttles.Throttle method), 10

T
Throttle (class in aiothrottles.throttles), 10

17

	Usage
	Installation
	Supported Python Versions
	Getting Started
	Examples
	throttles

	Indices and tables
	Python Module Index
	Index

